| | DOAS-QLCI | AHU-VAV | Explanation | |--|---|--|---| | IAQ – related to Ventilation Effectiveness (Ez) • Cooling Mode • Heating Mode | Displacement Ventilation: "purges" the occupied space 1.2 1.0-1.2 | Mixed air ventilation: dilutes but forces dirty air into occupied space 1.0 at best 0.8 | True measure of contaminant removal effectiveness; Ez > 1.0 => better IAQ (lower CO2) in room; DIV lifts contaminants up & away | | Acoustics • Why • Why | <35 dBA No fan, motor, damper or compressor in room Low Velocity | >35 dBA Increased Air CFM Higher Air Velocity Noise potential in duct & at diffuser | DOAS delivers code
minimum OA to space
AHU-VAV delivers OA PLUS
high % of return air for clg
& htg | | Maintenance | Vacuum coil 1x/yr | Change filters Fan bearings Motors Belts Controls | AHU uses 2/3 RA; better filtration needed. DCV necessary for limiting energy use; control points are expensive | | System EfficiencyWhyWhy | High Hydronic heat transfer Displacement Ventilation Reduced chiller capacity | Medium
Air heat transfer
Mixed air ventilation
Large air handler | DOAS unit is ~1/3 CFM of AHU=>smaller ducts, coils, fans, bhp, fla, mca Reduced fan energy More efficient chiller | | | DOAS-QLCI | AHU-VAV | Explanation | |---|-----------|---|---| | Room to Room air contamination risk | None | High % of air pulled from all rooms, mixed at air handler and returned as supply air to all rooms | DOAS-QLCI has dedicated EA pulled from room & exhausted at DOAS, no recirculation during occupied hours | | Installed Costs | 1.0 | 0.95-1.0-1.05 | Recent feedback; DOAS-
QLCI inline w/ well-
designed AHU-VAV | | Life Cycle Duration | 30+ years | 20+ years | Better practices req'd for AHU-VAV due to more moving parts | | Installation Considerations or
Risks | Low | Medium | AHU-VAV: needs considerable ceiling space for large ducts & high voltage power in rooms | | Proprietary Technology | No | No | Hydronics piping, ducting | | Physical Space Impact | Minimal | Minimal | | | Occupant Comfort | High | Medium | QLCI has lower air velocities & moderate temps delivered from fullwall array. AHU-VAV can have localized drafts | | | DOAS-QLCI | DOAS-FCU | Explanation | |---|---|--|---| | IAQ – related to Ventilation Effectiveness (Ez) Cooling Mode Heating Mode | Displacement Ventilation: "purges" the occupied space 1.2 1.0-1.2 | Mixed air ventilation: dilutes but forces dirty air into occupied space 1.0 at best 0.8 | True measure of contaminant removal effectiveness; Ez > 1.0 => better IAQ (lower CO2) in room; DIV lifts contaminants up & away | | Acoustics • Why • Why | <35 dBA No fan, motor, damper or compressor in room Low Velocity | ≥35 dBA Single-Point HVAC device needs higher supply air velocity; Noise potential in duct & at diffuser | No moving parts in QLCI plus full-wall air delivery method allows for lower air velocity resulting quieter airflow | | Maintenance | Vacuum coil 1x/yr | Change filters Fan bearings Motors Belts Controls | Filtration localized at DOAS unit with QLCI. Filtration needed at FCU terminal devices with FCU and VRF. Moving parts in FCU require service. | | System EfficiencyWhyWhy | High Hydronic heat transfer Displacement Ventilation Reduced chiller capacity | Medium Plus
Air heat transfer
Mixed air ventilation
Larger DOAS | Higher Ez, results in smaller DOAS with DIV. No fan energy at terminal with QLCI | | | DOAS-QLCI | DOAS-FCU | Explanation | |---|-----------|-----------|--| | Room to Room air contamination risk | None | None | DOAS-QLCI and DOAS-FCU operate in similar manner for room-to-room contaminants | | Installed Costs | 1.0 | 1.05-1.1 | High-voltage electrical requirements for FCU is considerable | | Life Cycle Duration | 30+ years | 20+ years | Better maintenance
practices req'd for DOAS-
FCU due to more moving
parts at FCU | | Installation Considerations or
Risks | Low | Medium | Similar ductwork but high voltage power req'd for FCU | | Proprietary Technology | No | No | Hydronics piping, ducting | | Physical Space Impact | Minimal | Minimal | | | Occupant Comfort | High | Medium | QLCI has lower air velocities & moderate temps delivered from fullwall array. DOAS-FCU can have localized drafts | | | DOAS-QLCI | DOAS-VRF | Explanation | |---|---|--|--| | IAQ – related to Ventilation Effectiveness (Ez) Cooling Mode Heating Mode | Displacement Ventilation: "purges" the occupied space 1.2 1.0-1.2 | Mixed air ventilation: dilutes but forces dirty air into occupied space 1.0 at best 0.8 | True measure of contaminant removal effectiveness; Ez > 1.0 => better IAQ (lower CO2) in room; DIV lifts contaminants up & away | | Acoustics • Why • Why | <35 dBA No fan, motor, damper or compressor in room Low Velocity | ≥35 dBA Single-Point HVAC device needs higher supply air velocity; Noise potential in duct & at diffuser | No moving parts in QLCI plus full-wall air delivery method allows for lower air velocity resulting quieter airflow | | Maintenance | Vacuum coil 1x/yr | Change filters Refrigerant concerns Refrigerant growing obsolete Complexity in operating controls | Filtration localized at DOAS unit with QLCI. Filtration needed at terminal devices VRF. VRF complexity & refrigerants a service concern. | | System EfficiencyWhyWhy | High Hydronic heat transfer Displacement Ventilation Reduced chiller capacity | High
Refrigerant heat transfer
Ability to heat and cool in
varied spaces | Higher Ez, results in smaller DOAS with DIV. No fan energy at terminal with QLCI. Refrigerant has high BTU capacity | | | DOAS-QLCI | DOAS-VRF | Explanation | |---|-----------|-------------|--| | Room to Room air contamination risk | None | None | DOAS-QLCI and DOAS-VRF operate in similar manner for room-to-room contaminants | | Installed Costs | 1.0 | 1.0-1.05 | Recent feedback; DOAS-
QLCI inline w/ DOAS-VRF,
high voltage power req'd
for VRF | | Life Cycle Duration | 30+ years | 20+ years | Better practices req'd for DOAS-VRF due to more moving parts & refrigerant | | Installation Considerations or
Risks | Low | Medium | VRF: need good piping practices & high voltage power in rooms | | Proprietary Technology | No | Yes | VRF has complex controls | | Physical Space Impact | Minimal | Minimal | | | Occupant Comfort | High | Medium Plus | QLCI has lower air velocities & moderate temps delivered from fullwall array. DOAS-VRF can have localized drafts | | | DOAS-QLCI | Unit Vent | Explanation | |---|---|--|--| | IAQ – related to Ventilation Effectiveness (Ez) Cooling Mode Heating Mode | Displacement Ventilation: "purges" the occupied space 1.2 1.0-1.2 | Mixed air ventilation: dilutes but forces dirty air into occupied space 1.0 at best 0.8 | True measure of contaminant removal effectiveness; Ez > 1.0 => better IAQ (lower CO2) in room; DIV lifts contaminants up & away | | Acoustics • Why • Why | <35 dBA No fan, motor, damper or compressor in room Low Velocity | ≥ 40 dBA, when new; Increased Air CFM Higher Air Velocity Noise potential in terminal device | DOAS delivers verifyable code minimum OA to space. UV has limited ability to prove OA % | | Maintenance | Vacuum coil 1x/yr | Change filters Fan bearings Motors Belts Controls | Filter change outs req'd in every room; w/possible varied sizes across bldg. Poor maintenance results in shorter life span and noise | | System EfficiencyWhyWhy | High Hydronic heat transfer Displacement Ventilation Reduced chiller capacity | Medium to Low
Air heat transfer
Mixed air ventilation | Large fan power energy
consumption with UV;
data indicates UV can
consume 30% more
energy | | | DOAS-QLCI | Unit Vent | Explanation | |--------------------------------------|-----------|--|--| | Room to Room air contamination risk | None | Some, depends on bldg. practices. More concern with dust, debris and fumes from outside louver | DOAS-QLCI has dedicated EA pulled from room & exhausted at DOAS, no recirculation during occupied hours | | Installed Costs | 1.0 | 0.75-1.0 | Depending upon type of UV; some self-contained UVs are impactful | | Life Cycle Duration | 30+ years | 20+ years | Better practices req'd for UVs due moving parts | | Installation Considerations or Risks | Low | Medium | Uvs require high voltage power; proper positioning of desks | | Proprietary Technology | No | No | | | Physical Space Impact | Minimal | Medium Plus | Similar UV protrude into room; cannot place books on top: blocks UV outlet | | Occupant Comfort | High | Medium Plus | QLCI has lower air velocities & moderate temps delivered from fullwall array. UV can have localized drafts & noise |